

FEDERAL BOARD OF INTERMEDIATE AND SECONDARY EDUCATION H-8/4, ISLAMABAD

No.1-2/FBISE/RES/599

18 July, 2024

NOTIFICATION

In continuation to this office Notifications No.1-2/FBISE/RES/CC/391 dated 21 June 2023 the Model Question Paper for the subject of Mathematics at HSSC-II level as per Curriculum 2006 alongwith Table of Specifications (TOS) and Alignment Chart is prepared for the Annual Examinations 2025 only and uploaded on the weblink https://www.fbise.edu.pk/curriculum_model_paper.php. It is pertinent to mention here that with effect from Annual Examinations 2026 and onwards Paper of Mathematics HSSC-II will be assessed as per Curriculum 2022-23.

(SYED ZULFIQAR SHAH)

Deputy Secretary (Research & Academics) Ph:051-9269539

Heads of all Institutions affiliated with FBISE at HSSC level

Copy to:

- 1. Director General, Federal Directorate of Education, G-9/4, Islamabad
- 2. Director General, FGEI (C&G) Directorate, Sir Syed Road, Rawalpindi Cantt
- 3. Assistant Chief of the Air Staff (Education), PAF Air Headquarters, Peshawar
- 4. Director Education, Directorate of Naval Educational Services, Naval HQ, Islamabad
- Deputy Director General (DDG), Army Public Schools and Colleges System Secretariat, Sectt Block, Army Central Library, Tameez Ud Din Road, GHQ, Rawalpindi
- 6. Director, CB Education Directorate, C/o Chaklala Cantonment Board, Rawalpindi
- 7. Director (Education), Fauji Foundation Head Office, Welfare Division, Chaklala, Rawalpindi
- 8. Director General, OPF Head Office Building, Shahrah-e-Jamhuriat, Sector G-5/2, Islamabad
- 9. Director Education, Kahuta Research Laboratory (KRL), Kahuta, District Rawalpindi
- 10. Director (Education), Gilgit-Baltistan
- 11. Director Education, 210-WAPDA, Wapda House Lahore
- 12. Mr. Muhammad Ashraf Hiraj, Principal, Startwell Education House No.9, Main Khayban-e-Tanveer Chaklala Scheme-III, Rawalpindi Cantt
- Mrs. Sakina Fowad Bukhari, Principal, City Lyceum School House No.394 St.No.4, Gulraiz-3 near Madina Mall, High Court Road, Rawalpindi
- 14. The Director, Punjab Group of Colleges, 6th Road, Rawalpindi
- 15. The Director Regional Office (North), Beaconhouse Regional Office (North), Capital View Road, Mohra Nur, Banigala Islamabad
- The Director Regional Office (North), The City School, Street 7, National Police Foundation, Sector E-11/4, Islamabad
- 17. Roots International Schools and Colleges, Head Office, Main Service Road West, Opp. G-13/4, Islamabad
- Brig Dr. Muhammad Hanif (R) SI (M), Principal, Dr A Q Khan College of Science & Technology, Bahria Town, Phase 8, Islamabad
- 19. All HODs, FBISE, Islamabad
- 20. Director IT (with the request to upload the same on FBISE website and social media)
- 21. Deputy Controller of Exams (Strong Room)
- 22. Incharge, FBISE, Sub-Office, Gilgit
- Incharge, FBISE Sub-Office, Skardu
- 24. PA to Chairman, FBISE, Islamabad
- 25. APS to Secretary, FBISE, Islamabad
- 26. APS to Director (R&A), FBISE
- 27. Chat Room, FBISE, Islamabad

Federal Board HSSC-II Examination Model Question Paper Mathematics

(Curriculum 2006)

		RC	DLL N	UMB	ER		,	Versio	on No.	•
<u>Section - A (Marks 20)</u>										
Time Allowed: 25 minutes	(0) (1) (2)	(0) (1) (2)	(0) (1) (2)	(0) (1) (2)	(0) (1) (2)	(0) (1) (2)	(0) (1) (2)	(0) (1) (2)	(0) (1) (2)	(0) (1) (2)
Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.	3456789	3 4 5 6 7 8 9	3456789	3 4 5 6 7 8 9	3456789	3 4 5 6 7 8 9	3456789	3 4 5 6 7 8 9	3 4 5 6 7 8 9	3456789

Candidate Sign. _____

Invigilator Sign.

Q1. Fill the relevant bubble against each question. Each part carries one mark.

Sr no.	Question	Α	В	С	D	A	В	С	D
i.	Which one of the following commands is used to draw a graph?	limit	iscont	det	plots	0	0	0	0
ii.	The range of the function $f(x) = x - 5 $ is:	(−∞,0]	[0,+∞)	[5, +∞)	[−5, +∞)	0	0	0	0
iii.	What limit given in the following results $\frac{\sin(1-x)}{(1-x)} = 1?$	$x \rightarrow -1$	$x \rightarrow 0$	$x \rightarrow 1$	$\chi ightarrow \infty$	0	0	0	0
iv.	What is the derivative of $log_5 e^x w.r.t.x$?	$\frac{1}{xlog5}$	$\frac{1}{xln5}$	$x \log_5 e$	xlne	0	0	0	0
v.	What is the value of $\sqrt{1-x^2} \frac{dy}{dx} (\sin^{-1}x + \cos^{-1}x)?$	2	0	$\sqrt{1-x^2}$	$\frac{1}{x}$	0	0	0	0
vi.	Which of the following represents $(y_2 + y)$, if $y = cosx$?	- <i>y</i>	0	у	2 <i>y</i>	0	0	0	0
vii.	If $\vec{F}(t) = (t+5)\underline{i} + (2t^3)\underline{j} - (3t)\underline{k}$, then what is the evaluated value of $\lim_{t \to -2} \vec{F}(t)$?	3 <u>i</u> + 8j – 6 <u>k</u>	3 <u>i</u> – 16 <u>j</u> – 6 <u>k</u>	3 <u>i</u> – 16j + 6 <u>k</u>	7 <u>i</u> + 16j + 6 <u>k</u>	0	0	0	0
viii.	For a velocity vector $\vec{v} = cos(t)\underline{i} - 2sin(t)\underline{j} + 3\underline{k}$, the acceleration vector \vec{a} is:	sin(t) <u>i</u> + 2cos(t) <u>j</u> + 3 <u>k</u>	sin(t) <u>i</u> – 2cos(t) <u>j</u> + 3 <u>k</u>	-sin(t) <u>i</u> + 2cos(t) <u>j</u>	—sin(t) <u>i</u> — 2cos(t) <u>j</u>	0	0	0	0
ix.	For what value of k, the integral $\int_{1}^{k} x^{n-1} dx = \frac{1}{n}$?; $n \in Z$	$\sqrt[n]{\frac{2}{n}}$	$\sqrt[n]{2}$	2 ⁿ	$\sqrt[n]{\frac{2n-1}{n}}$	0	0	0	0

x.	What is the evaluated value of $\int_0^{2\pi} Sinx dx$?	-2	0	2	4	0	0	0	0
xi.	For what values of x , the distance between the points (7,1) and (3, x) is 5?	4, -2	-4,2	4,2	-4,-2	0	0	0	0
xii.	The three lines defined by the equations x + 2y = 0, 2x + y = 0, 3x + 5y = 0 are:	sides of a triangle	Perpendicul ar	concurrent	parallel	0	0	0	0
xiii.	Which one of the following is an equation of a circle with center $(3, -7)$ and goes through a point $(1, 1)$?	$(x + 3)^{2} + (y - 7)^{2} = 52$	$(x - 3)^2 + (y + 7)^2 = 68$	$(x - 3)^2 + (y + 7)^2 = 32$	$(x + 3)^2 + (y - 7)^2 = 40$	0	0	0	0
xiv.	What is the length of tangent drawn from an external point (-1, 2) to the circle $2x^2 + 2y^2 - 4x + 8y =$ 0?	17	$\sqrt{3}$	5	$\sqrt{5}$	0	0	0	0
xv.	Which one of the following represents a parabola with focus (5,0) and vertex (0,0)?	$x^2 = 20y$	$x^2 = -20y$	$y^2 = -20x$	$y^2 = 20x$	0	0	0	0
xvi.	Equations of the asymptotes of a hyperbola $\frac{x^2}{7^2} - \frac{y^2}{4^2} = 1$ are:	$y = \pm \frac{4}{7}$	$y = \pm \frac{7}{4}$	$x = \pm \frac{4}{7}$	$x = \pm \frac{7}{4}$	0	0	0	0
xvii.	What is the order and degree of the differential equation $\frac{d^3y}{dx^3} -$ $\sin^{-1}\left(\frac{d^2y}{dx^2}\right) = x^4 e^x$?	3,4	3, 2	3, 1	3, not defined	0	0	0	0
xviii.	What is the solution of the differential equation xdy - ydx = 0?	y = cx	$y = ce^x$	x - y = c	xy = c	0	0	0	0
xix.	The MAPLE command to solve equation $3x^2 + 4x - 3 = 0$ is:	Simpson $(3x^2 + 4x - 3 = 0)$	f solve (3x2 +4x - 3 = 0)	solve $(3x^2 + 4x - 3 = 0)$	Psolve $(3x^2 + 4x - 3 = 0)$	0	0	0	0
xx.	If $f(0) = 1, f(1) = 2.72$ then, what is the approximated value of $\int_0^1 f(x) dx$ by using the trapezoidal rule?	1.86	1.88	1.87	1.72	0	0	0	0

Federal Board HSSC-II Examination Model Question Paper Mathematics

(Curriculum 2006)

Time allowed: 2.35 hours

Total Marks: 80

Note: Answer all parts from Section 'B' and all questions from Section 'C' on the **E-sheet**. Write your answers on the allotted/given spaces.

SECTION – B (Marks 48)

 $(12 \times 4 = 48)$

Q.2	Question	Marks		Question	Marks
i.	 For an implicit function x² + y² = 4 a) Write 'Maple' command for plotting graph b) Plot graph manually. c) Write down domain and range. 	4	OR	 Find the equation of the following straight lines. a) Parallel to x – axis and at a distance of 5 units below it. b) Perpendicular to y – axis and passing through the point (6,4). 	4
ii.	Find the area under the graph of $f(x) = x^3 - x$ over the interval $[-1, 1]$	4	OR	Determine the equation of the tangent to the curve defined by $y = 2x^2 - 7x + 1$ at $x = 2$.	4
iii.	Prove that $f(x, y) = x^3 - 3xy^2 + 5x^2y + 7y^3$ is a homogeneous equation of degree 3 and verify Euler's Theorem for f .	4	OR	Test the continuity of the function $f(x) = \begin{cases} 1 - 3x, \ x < -6\\ 7, \ x = -6 \\ x^3, \ x > -6 \end{cases} at x = -6$	4
iv.	Solve the differential equation $\frac{dy}{dx} = 1 - xy + y - x.$	4	OR	Evaluate $\lim_{x\to 0} \frac{(1+x)^{-2}-1}{x}$ and write its maple command.	4
v.	Compute four iterates of the bisection method for the function $f(x) = 2e^{-x} - 5 = 0$ for [0, 1].	4	OR	Determine the 4 th derivative of $f(z) = 9sin\left(\frac{z}{3}\right) + cos(1 - 2z)$	4
vi.	For what value of k, line x - y + k = 0 will touch the circle $x^2 + y^2 = 81$. Also find tangent to the circle.	4	OR	Convert the equation $x^2 + 4y^2 + 2x - 24y + 33 = 0$ in standard form. Find the coordinates of the center, vertices, co-vertices and foci.	4
vii.	(a) By differentiating $x^2 - y^2 = 1$ implicitly, show that $\frac{dy}{dx} = \frac{x}{y}$ (b) Show that $\left(\frac{dy}{du}\right)_{u=0} = 0$, if $y = 3sin2x$ and $x = u^2 + \pi$	4	OR	A person on a hang glider is spiraling upward due to rapidly rising air on a path having position vector $\vec{r}(t) = (3cost)\underline{i} + (3sint)\underline{j} + (t^2)\underline{k}$. Find velocity and acceleration vectors.	4
viii.	Find values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the function $f(x, y) = \sqrt{y^2 - \ln(9y + 3x^2)}$	4	OR	Find the derivative of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)w.r.t.\tan^{-1}x.$	4
ix.	Evaluate $\int \frac{dx}{x^2 - 1}$	4	OR	If $\vec{F}(t) = e^t \tan(t)\underline{i} - \sqrt{\pi} \sec(t)\underline{j} + 2t\underline{k}$, then (a) Evaluate $\vec{F}(0)$, $\vec{F}\left(\frac{\pi}{2}\right)$ and $\vec{F}\left(\frac{2\pi}{3}\right)$	4

				(b) State domain of the function \vec{F} .	
х.	Find partial derivatives f_x and f_y of the	4		Find all the points on curve	4
	function $f(x, y) = x^2 e^{xy} + ln(x + y)$		OR	$y = 2x^3 + 4x^2$ where tangent line is	
				parallel to the line $y = 8x - 4$.	
xi.	Find whether $f(x) = (x^4 - 4x + 2)^5$	4		Evaluate $\int x e^{-x} dx$	4
	shows relative maximum, relative		0.0		
	minimum or neither at critical value		OR		
	x = 1.				
xii.	Use the Newton-Raphson iterative	4		Anwar is driving a car with uniform	4
	method to approximate the actual root			speed $x + xt$, find:	
	r = 0.438447 of the non-linear equation		OR	(i) Distance as a function of 't'	
	$f(x) = x^2 - 5x + 2$ with initial start			(ii) Constant when $x(0) = 2$	
	$x_o = 0.4$ that must be accurate to six				
	decimal places.				

SECTION – C (Marks 32)

($4 \times 8 = 32$) **Note:** Attempt all questions. Marks of each question are given.

Q. No.	Question	Marks		Question	Marks
Q3	 A curve has an equation y = ¹/₂x³ - 9x^{1.5} + ⁸/_x + 30, x > 0 (a) Find ^{dy}/_{dx} (b) Show that a point (4, -8) lies on the curve defined. (c) Find equations of the tangent and normal at (4, -8) giving your answer in the form ax + by + c = 0 ∀a, b, c ∈ R 	8	OR	If $\vec{F}(t) = \underline{i} + 2e^{2t}\underline{j} + t^3\underline{k}$ and $\vec{G}(t) = 3t^2\underline{i} + 5e^{-t}\underline{j} - t3\underline{k}$ are the vector functions then evaluate a) $\frac{d}{dt}(\vec{F} \times \vec{G})(t)$ b) $\frac{d\vec{F}}{dt} \times \vec{G}$ c) $\vec{F} \times \frac{d\vec{G}}{dt}$ and verify d) $\frac{d}{dt}(\vec{F} \times \vec{G})(t) = \frac{d\vec{F}}{dt} \times \vec{G} + \vec{F} \times \frac{d\vec{G}}{dt}$	8
Q4	 (a) A(5,1), B(3,-5) and C(-3,7) are the vertices of triangle ABC. Find equations of medians of triangle ABC. (b) Show that medians of triangle ABC are concurrent. 	8	OR	 (a) If A(-2,5), B(1,5) are end points of chord AB of circle x² + y² + x - 5y - 2 = 0, then show that line drawn from the center of circle is perpendicular to chord AB, and bisects chord AB. (b) Coordinates of end points of two chords are P(0,2), Q(-2,0) and R(0, -2), S(2,0). Show that the two chords PQ and RS are equidistant from the center of circle x² + y² = 4. 	8
Q5	Evaluate $\int (\theta^4 + \pi) e^{3\theta} d\theta$	8	OR	Solve the differential equation $y^{2}dx + (xy + x^{2})dy = 0$	8
Q6	If $u = \sec^{-1} \left[\frac{x - y}{x^{\frac{3}{4}} + y^{\frac{3}{4}}} \right]^{\frac{1}{7}}$, then Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{28} \cot u$	8	OR	Approximate the definite integral $I = \int_0^1 \sqrt{1 - x^2} dx$ for $n = 4$ subintervals by using Simpson's Rule and then compare your approximate answer with the actual value of the definite integral.	8

Federal Board HSSC-II Examination <u>Mathematics Model Question Paper</u> (Curriculum 2006) Alignment of Questions with Student Learning Outcomes

OBJECTIVE PART SECTION A

Q. No. (Part no.)	Content Area/ Domain	Student Learning Outcomes	Cognitive Level *	Allocated Marks
Q1(i)	Domain: Algebra	[1.1]: (ii) Recognize basic MAPLE commands	K	1
Q1(ii)	Domain: Algebra	[2.1]: (ii) Draw the graph of modulus function $(y = x)$ and identify its domain and range.	U	1
Q1(iii)	Domain: Algebra	[2.7]: (ii) Evaluate limits of different algebraic, exponential and trigonometric functions.	U	1
Q1(iv)	Domain: Algebra	[3.6]: (ii) Find the derivative of $ln x$ and $log_a x$ from first principles.	U	1
Q1(v)	Domain: Algebra	[3.5]: Inverse trigonometric functions (arcsin x, arccos x, arctan x, arccscx, arcsecx and arccotx) using differentiation formulae.	К	1
Q1(vi)	Domain: Algebra	[4.1]: (i) Find higher order derivatives of algebraic, trigonometric, exponential and logarithmic functions.	U	1
Q1(vii)	Domain: Algebra	[5.2]: (i) The limit of the sum (difference) of two vector functions is the sum (difference) of their limits.The limit of the product of a scalar function and a vector function is the product of their limits	К	1
Q1(viii)	Domain: Geometry	[5.4]: (ii) Apply vector differentiation to calculate velocity and acceleration of a position vector $\vec{r}(t) = x(t)\underline{i} + y(t)\underline{j} + z(t)\underline{k}$.	А	1
Q1(ix)	Domain: Algebra	[6.6]: (iii) Extend techniques of integration using properties to evaluate definite integrals.	U	1
Q1(x)	Domain: Algebra	[6.6]: (v) Apply definite integrals to calculate area under the curve.	А	1
Q1(xi)	Domain: Geometry	[7.1]: (i) Recall distance formula to calculate distance between two points given in Cartesian plane.	K	1
Q1(xii)	Domain: Geometry	[7.7]: (i) Find the condition of concurrency of three straight lines.	U	1
Q1(xiii)	Domain: Geometry	[8.2]: (i) Define circle and derive its equation in standard form i.e. $(x - h)^2 + (y - k)^2 = r^2$	U	1
Q1(xiv)	Domain: Geometry	[8.3]: (v) Find the length of tangent to a circle from a given external point.	K	1
Q1(xv)	Domain: Geometry	 [9.1]: (iv) Find the equation of a parabola with the following given elements: focus and vertex, 	U	1

Q1(xvi)	Domain: Geometry	[9.3]: (iv) Convert a given equation to the standard form of equation of a hyperbola, find its elements and sketch the graph.	U	1
Q1(xvii)	Domain: Algebra	[10.1]: Define ordinary differential equation (DE), order of a DE, degree of a DE, solution of a DE.	K	1
Q1(xviii)	Domain: Algebra	[10.3]: (i) Solve differential equations of first order and first degree of the form:	U	1
Q1(xix)	Domain: Algebra	[12.1]: (iv) Use MAPLE command <i>f solve</i> to find numerical solution of an equation and demonstrate through examples.	U	1
Q1(xx)	Domain: Algebra	[12.2]: (ii) Use MAPLE command <i>trapezoid</i> for trapezoidal rule and <i>simpson</i> for Simpson's rule.	А	1

SUBJECTIVE PART SECTION B & C

Q. No. (Part no.)	Content Area/ Domain	Description of Student Learning Outcomes	Cogni tive Level *	OR	Content Area/ Domain	Description of Student Learning Outcomes	Cognit ive Level *	Allocat ed Marks
Q2(i)	Domain: Algebra	[1.3]: (i) Plot a two- dimensional graph.	U	OR	Domain : Geomet ry	[7.3]: Find the equation of a straight line parallel to • $y - axis$ and at a distance a from it, • $x - axis$ and at a distance b from it.	U	4
Q2(ii)	Domain: Algebra	[6.6]: (v) Apply definite integrals to calculate area under the curve.	A	OR	Domain : Geomet ry	[9.1]: (vii) Find the equation of a tangent and a normal to a parabola at a point	U	4
Q2(iii)	Domain: Algebra	[11.2]: (iii) Verify Euler's theorem for homogeneous functions of different degrees (simple cases).	U	OR	Domain : Algebra	[2.8]: (iii)Test continuity and discontinuity of a function at a point and in an interval.	U	4
Q2(iv)	Domain: Algebra	[10.3]: (i) Solve differential equations of first order and first degree of the form: • separable variables	к	OR	Domain : Algebra	[2.7]: (i) Evaluate the limits of functions of the following type $\frac{(1+x)^{n}-1}{x}$ when $x \to 0$	U	4
Q2(v)	Domain: Algebra	[12.1]: (iii) Calculate real roots of a non-linear equation in one variable by	A	OR	Domain : Algebra	[4.1]: (i) Find higher order derivatives of algebraic, trigonometric,	к	4

		• bisection method				exponential and logarithmic functions.		
Q2(vi)	Domain: Geometr y	[8.3]: (ii) Find the condition when a line touches the circle.	U	OR	Domain : Geomet ry	[9.2]: (v) Convert a given equation to the standard form of equation of an ellipse, find its elements and draw the graph.	К	4
Q2(vii)	Domain: Algebra	[3.4]: (iv) Find derivative of implicit function. Prove that $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ when y = f(u) and u = g(x).	U	OR	Domain : Geomet ry	[5.4]: (ii) Apply vector differentiation to calculate velocity and acceleration of a position vector $\vec{r}(t) = x(t)\underline{i} + y(t)\underline{j} + z(t)\underline{k}$	A	4
Q2(viii)	Domain: Algebra	[11.1]: (iii) Find partial derivatives of a function of two variables.	K	OR	Domain : Algebra	[3.4]: (i) Prove that $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ when y = f(u) and u = g(x)	U	4
Q2(ix)	Domain: Algebra	[6.5]: Use partial fractions to find $\int \frac{f(x)}{g(x)} dx$, where $f(x)$ and $g(x)$ are algebraic functions such that $g(x) \neq 0$.	U	OR	Domain : Geomet ry	 [5.1]: (i) Define scalar and vector function. ii) Explain domain and range of a vector function. 	U	4
Q2(x)	Domain: Algebra	[11.1]: (iii) Find partial derivatives of a function of two variables.	K	OR	Domain : Geomet ry	[8.3]: (ii) Find the condition when a line touches the circle.	K	4
Q2(xi)	Domain: Algebra	[4.4]: (iii) Examine a given function for extreme values.	U	OR	Domain : Algebra	[6.4]: (iii) Evaluate integrals using integration by parts.	U	4
Q2(xii)	Domain: Algebra	[12.1]: (iii) Calculate real roots of a non- linear equation in one variable by Newton-Raphson method.	U	OR	Domain : Algebra	[10.3] (ii) Solve real life problems related to differential equations.	A	4
Q3	Domain: Geometr y	[4.3]: (ii) Find the equation of tangent and normal to the curve at a given point.	К	OR	Domain : Geomet ry	[5.4]: (ii) Apply vector differentiation to calculate velocity and acceleration of a position vector $\vec{r}(t) = x(t)\underline{i} + y(t)\underline{j} + z(t)\underline{k}$.	Α	8

Q4	Domain: Geometr y	[7.7]: (ii) Find the equation of median, altitude and right bisector of a triangle.	U	OR	Domain : Geomet ry	[8.4]: Prove analytically the following properties of a circle. Perpendicular from the center of a circle on a chord bisects the chord.	Α	8
Q5	Domain: Algebra	[6.4]: (iii) Evaluate integrals using integration by parts.	U	OR	Domain : Algebra	[10.3]: (i) Solve differential equations of first order and first degree of the form: • homogeneous equations	K	8
Q6	Domain: Algebra	[11.2]: (iii) Verify Euler's theorem for homogeneous functions of different degrees (simple cases).	U	OR	Domain : Algebra	[12.2]: (i) Define numerical quadrature. Use Simpson's rule, to compute the approximate value of definite integrals without error terms.	K	8

*Cognitive Level

K: Knowledge

U: Understanding A: Application

<u>Table of Specification</u> Model Question Paper Mathematics – Grade XII (HSSC-II)

(Curriculum 2006)

Topics	1 INTRODUCTION TO SYMBOLIC PACKAGE: MAPLE	2 FUNCTION S AND LIMITS	3 DIFFERENTIA TION	4 HIGHER ORDER DERIVATIVES AND APPLICATIONS	5 DIFFERENTIATIO N OF VECTOR FUNCTIONS		7 PLANE ANALYTIC GEOMETRY – STRAIGHT LINE	8 CONICS – I	9 CONIC S – II	10 DIFFERENTI AL EQUATIONS	11 PARTIAL DIFFERENTI ATION	12 INTRODUCTIO N TO NUMERICAL METHODS	of each	Percentag e of Cognitive Level
Knowledge	1i(1)		1v(1)	2v/s(4) 3/f(8)	1vii(1)		1xi(1)	1xiv(1) 2x/s(4)	2vi/s(4)	1xvii(1) 2iv/f(4) 5/s(8)	2viii/f(4) 2x/f(4)	6/s(8)	54	30%
Comprehensio n	2i/f(4)	1ii(1) 1iii(1) 2iii/s(4) 2iv/s(4)	1iv(1) 2vii/f(4) 2viii/s(4)	1vi(1) 2xi/f(4)	2ix/s(4)	1ix(1) 2ixf/(4) 2xi/s(4) 5/f(8)	1xii(1) 2i/s(4) 4/f(8)	1xiii(1) 2vi/f(4)	1xv(1) 2ii/s(4)	1xviii(1)	2iii/f(4) 6/f(8)	1xix(1) 2xii/f(4)	90	50%
Application					1viii(1) 2vii/s(4) 3/s(8)	1x(1) 2ii/f(4)		4/s(8)	1xvi(1)	2xii/s(4)		1xx(1) 2v/f(4)	36	20%
Total marks	5	10	10	17	18	22	14	18	10	18	20	18	180	100%

Key:

> 1, 2, 3 etc. stands for question numbers

> i, ii, iii etc. stands for part of question numbers

(1), (2), (3) etc. stands for marks of question papers

Question Number (part/ first choice) marks
example: Q2 (i / f) 4

Question Number (part/ second choice) marks example: Q2 (i / s) 4

Note:

1 This TOS does not reflect policy, but it is particular to this model question paper.

2 Proportionate / equitable representation of the content areas may be ensured.

3 The percentage of cognitive level is 20%, 50%, and 30% for knowledge, understanding, and application, respectively with ± 5% variation.

4 While selecting alternative questions for SRQs and ERQs, it must be kept in mind that:

• Difficulty levels of both questions should also be same

• SLOs of both the alternative questions must be different