EXERCISE 1.1

Q.1 Which of the following sets have closure property w.r.t. addition and multiplication

 $(i) \qquad \{0\}$

The set is closed w.r.t. addition because $0 + 0 = 0 \in \{0\}$

The set is closed w.r.t. multiplication because $0.0 = 0 \in \{0\}$

(ii) {1}

The set is not closed w.r.t. addition because $1 + 1 = 2 \notin \{1\}$

The set is closed w.r.t. multiplication because $1.1 = 1 \in \{1\}$

(iii) $\{0, -1\}$

30 - - -	0	-1
0	0	-1
-1	-11	-2

The set is not closed w.r.t. addition because $-2 \notin \{0, -1\}$

•	0	-1
0	0	0
-1	0	1

The set is not closed w.r.t. multiplication because $1 \notin \{0, -1\}$

(iv) $\{1, -1\}$

+	1	-1
1	2	0
-1	0	-2

The set is not closed w.r.t. addition because $-2, 0, 2 \notin \{-1, 1\}$

	1	-1
1	1	-1
-1	-1	1

The set is closed w.r.t. multiplication.

Q.2 Name the properties used in the following equations (letters, where used, represents real numbers)

Solution:

(i) 4+9=9+4

Commutative property w.r.t. '+'

=

Converge to w.r.t. '+

(ii)
$$(a+1) + \frac{3}{4} = a + \left(1 + \frac{3}{4}\right)$$

Associative property w.r.t. '+'

(iii)
$$(\sqrt{3} + \sqrt{5}) + \sqrt{7} = \sqrt{3} + (\sqrt{5} + \sqrt{7})$$

Associative property w.r.t. '+'

(iv)
$$100 + 0 = 100$$

Additive Identity

(v)
$$100 \times 1 = 100$$

Multiplicative Identity

(vi)
$$4.1 + (-4.1) = 0$$

Additive Inverse

(vii)
$$a - a = 0$$

Additive Inverse.

(viii)
$$\sqrt{2} \times \sqrt{5} = \sqrt{5} \times \sqrt{2}$$

Commutative property w.r.t. '.'

$$(ix) a(b-c) = ab-ac$$

Left distributive property.

$$(x) \qquad (x - y) z = xz - yz$$

Right distributive property.

(xi)
$$4 \times (5 \times 8) = (4 \times 5) \times 8$$

Associative property w.r.t. '.'

(xii)
$$a(b+c-d) = ab + ac - ad$$

Left distributive property

Q.3 Name the properties used in the following inequalities.

Solution:

(i)
$$-3 < -2 \Rightarrow 0 < 1$$
 Additive property.

(ii)
$$-5 < -4 \Rightarrow 20 > 16$$
 Multiplication property.

(iii)
$$1 > -1 \Rightarrow -3 > -5$$
 Additive property.

(iv)
$$a < 0 \Rightarrow -a > 0$$
 Multiplicative property.

(v)
$$a > b \Rightarrow \frac{1}{a} < \frac{1}{b}$$
 Multiplicative property.

(vi)
$$a > b \Rightarrow -a < -b$$
 Multiplicative property.

Q.4 Prove the following Rules of Addition

(i)
$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$

Solution:

$$=\frac{a}{c}+\frac{b}{c}$$

$$= a \cdot \frac{1}{c} + b \cdot \frac{1}{c}$$

$$\frac{a}{b} = a \cdot \frac{1}{b}$$

$$= (a+b) \cdot \frac{1}{c}$$

Distributive property

$$=\frac{a+b}{c}$$

$$\pi$$
 a. $\frac{1}{c} = \frac{a}{c}$

(ii)
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

Solution:

L.H.S.
$$= \frac{a}{b} + \frac{c}{d}$$

 $= \frac{a}{b} \cdot 1 + \frac{c}{d} \cdot 1$ Multiplicative Identity
 $= \frac{a}{b} \cdot \left(d \cdot \frac{1}{d}\right) + \frac{c}{d}\left(b \cdot \frac{1}{b}\right)$ Multiplicative Inverse
 $= \frac{a}{b} \cdot \frac{d}{d} + \frac{c}{d} \cdot \frac{b}{b}$ $\therefore d \cdot \frac{1}{d} = \frac{d}{d}, b \cdot \frac{1}{b} = \frac{b}{b}$
 $= \frac{ad}{bd} + \frac{cb}{db}$ Commutative Property w.r.t. '.'
 $= ad \cdot \frac{1}{bd} + bc \cdot \frac{1}{bd}$ $\therefore \frac{a}{b} = a \cdot \frac{1}{b}$
 $= (ad + bc) \cdot \frac{1}{bd}$ Distributive Property
 $= \frac{ad + bc}{bd}$ $\therefore a \cdot \frac{1}{b} = \frac{a}{b}$

Q.5 Prove that $-\frac{7}{12} - \frac{5}{18} = \frac{-21 - 10}{36}$

= R.H.S.

Solution:

L.H.S. =
$$-\frac{7}{12} - \frac{5}{18}$$

= $-\frac{7}{12} \cdot 1 - \frac{5}{18} \cdot 1$ Multiplicative Identity
= $-\frac{7}{12} \left(3 \cdot \frac{1}{3}\right) - \frac{5}{18} \cdot \left(2 \cdot \frac{1}{2}\right)$ Multiplicative Inverse
= $-\frac{7}{12} \cdot \frac{3}{3} - \frac{5}{18} \cdot \frac{2}{2}$ \therefore a $\cdot \frac{1}{b} = \frac{a}{b}$
= $-\frac{21}{36} - \frac{10}{36}$

$$= -21 \cdot \frac{1}{36} - 10 \cdot \frac{1}{36}$$

$$= (-21 - 10) \cdot \frac{1}{36}$$

$$= \frac{-21 - 10}{36}$$

Distributive Property

Simplify by justifying each step: **Q.6**

= R.H.S.

$$(i) \qquad \frac{4+16x}{4}$$

Solution:

$$\frac{4 + 16x}{4}$$

$$= \frac{1}{4} \cdot (4 + 16x)$$

$$= \frac{1}{4} \cdot 4 + \frac{1}{4} \cdot 16x$$

$$= \frac{1}{4} \cdot 4 \cdot 4x$$

$$= 1 + 1 \cdot 4x$$

$$= 1 + 4x$$

$$\therefore \frac{a}{b} = \frac{1}{b}$$
, a

Distributive Property

Multiplicative Inverse

Multiplicative Inverse

Multiplicative Identity

(ii)
$$\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{4} - \frac{1}{5}}$$

Solution:

$$\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{4} - \frac{1}{5}}$$

$$= \left(\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{4} - \frac{1}{5}}\right) \cdot 1$$

Multiplicative Identity

$$= \left(\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{4} - \frac{1}{5}}\right) \cdot 20 \cdot \frac{1}{20}$$

Multiplicative Inverse

$$= \frac{\left(\frac{1}{4} + \frac{1}{5}\right) \cdot 20}{\left(\frac{1}{4} - \frac{1}{5}\right) \cdot 20}$$

$$\therefore 20. \frac{1}{20} = \frac{20}{20}$$

$$= \frac{\frac{1}{4} \cdot 20 + \frac{1}{5} \cdot 20}{\frac{1}{4} \cdot 20 + \frac{1}{5} \cdot 20}$$

Distributive Property

$$= \frac{\left(\frac{1}{4} \cdot 4\right)5 + \left(\frac{1}{5} \cdot 5\right)4}{\frac{1}{4} \cdot 4.5 + \frac{1}{5} \cdot 5.4} = \frac{1.5 + 1.4}{1.5 - 1.4}$$

Multiplicative Inverse

$$=\frac{5+4}{5-4}$$

Multiplicative Identity

$$=\frac{9}{1}=9$$

$$\frac{\frac{a}{b} + \frac{c}{d}}{\frac{a}{b} - \frac{c}{d}}$$

(iii)

$$= \left(\frac{\frac{a}{b} + \frac{c}{d}}{\frac{a}{b} - \frac{c}{d}}\right). 1$$

Multiplicative Identity

$$= \left(\frac{\frac{a}{b} + \frac{c}{d}}{\frac{a}{b} - \frac{c}{d}}\right) \cdot bd \cdot \frac{1}{bd}$$

Multiplicative Inverse

$$= \frac{\left(\frac{a}{b} + \frac{c}{d}\right). \text{ bd}}{\left(\frac{a}{b} - \frac{c}{d}\right). \text{ bd}}$$

$$\therefore bd \cdot \frac{1}{bd} = \frac{bd}{bd}$$

$$= \frac{\frac{a}{b} \cdot bd + \frac{c}{d} \cdot bd}{\frac{a}{b} \cdot bd - \frac{c}{d} \cdot bd}$$

Distributive Property

$$= \frac{a \cdot \frac{1}{b} \cdot b \cdot d + c \cdot \frac{1}{d} \cdot b \cdot d}{a \cdot \frac{1}{b} \cdot b \cdot d - c \cdot \frac{1}{d} \cdot b \cdot d} \qquad \qquad \therefore \quad \frac{1}{b} = a \cdot \frac{1}{b} \quad , \quad \frac{c}{d} = c \cdot \frac{1}{d}$$

$$= \frac{a \cdot \left(\frac{1}{b} \cdot b\right) d + c \cdot \left(\frac{1}{d} \cdot d\right) b}{a \cdot \left(\frac{1}{b} \cdot b\right) d - c \cdot \left(\frac{1}{d} \cdot d\right) b} \qquad \qquad \text{Commutative Property}$$

$$= \frac{a \cdot 1 \cdot d + c \cdot 1 \cdot b}{a \cdot 1 \cdot d - c \cdot 1 \cdot b} \qquad \qquad \text{Multiplicative Inverse}$$

$$= \frac{ad + cb}{ad - cb} \qquad \qquad \text{Multiplicative Identity}$$

$$= \frac{ad + cb}{1 - \frac{1}{a} \cdot \frac{1}{b}}$$

$$= \left(\frac{\frac{1}{a} - \frac{1}{b}}{1 - \frac{1}{a} \cdot \frac{1}{b}}\right) \cdot ab \cdot \frac{1}{ab} \qquad \qquad \text{Multiplicative Inverse}$$

$$= \frac{\left(\frac{1}{a} - \frac{1}{b}\right) \cdot ab}{\left(1 - \frac{1}{a} \cdot \frac{1}{b}\right) \cdot ab} \qquad \qquad \therefore \quad ab \cdot \frac{1}{ab} = \frac{ab}{ab}.$$

$$= \frac{\frac{1}{a} \cdot ab - \frac{1}{b} \cdot ab}{ab - \frac{1}{a} \cdot \frac{1}{b} \cdot ab} \qquad \qquad \text{Distributive Property}$$

$$= \frac{\left(\frac{1}{a} \cdot a\right) b - \left(\frac{1}{b} \cdot b\right) a}{ab - \left(\frac{1}{a} \cdot a\right) \left(\frac{1}{b} \cdot b\right)} \qquad \qquad \text{Commutative Property}$$

$$= \frac{1 \cdot b - 1 \cdot a}{ab - 1 \cdot 1} \qquad \qquad \text{Multiplicative Inverse}$$

$$= \frac{b - a}{ab - 1} \qquad \qquad \text{Multiplicative Inverse}$$

₌ Mative ative